e-hälsa ger bättre vård – med eller utan AI

e-hälsa och digitalisering av vården är 2010-talets melodi och nu börjar vi på allvar se fördelarna med det inom medicinsk diagnostik. Ta patienter som hamnar på sjukhus som ett exempel. Genom åren har flera statistiska modeller för att förutspå mortalitet, oplanerade återbesök och långvarig inläggning på sjukhus tagits fram. Genom att använda information om exempelvis blodtryck, puls, andning och vita blodkroppar kan modellerna med hyfsad noggrannhet avgöra risken att en patient avlider, tvingas komma tillbaka till sjukhuset eller blir kvar i mer än en vecka.

I en intressant artikel från maj i år visar forskare från bland annat Google och Stanford att ett AI-system som kan läsa digitala journaler gör ett betydligt bättre jobb när det gäller att förutspå sådana risker. Artikeln har uppmärksammats stort i media, bland annat av Daily Mail och Bloomberg. Studien ser ut som en triumf för e-hälsa och forskarna ägnar mycket utrymme åt att beskriva fördelarna med djupinlärning, som är den form av AI de använt.

Det är lätt att hålla med om att det här är ett stort kliv framåt för e-hälsa – det visar att datorsystem som tolkar hela journaler istället för några få mätvärden har stor potential. Däremot är det knappast något stort kliv framåt för AI. Den som läser artikeln lite närmare hittar nämligen en jämförelse mellan forskarnas djupinlärningssystem och ett betydligt enklare system som matats med samma journaldata. Det senare använder logistisk regression – en stapelvara inom traditionell statistisk analys, som lärs ut på grundkurser och har funnits sedan 1950-talet. Jämförelsen, som ligger gömd längst ner i artikelns appendix, visar att skillnaden mellan djupinlärning och logistisk regression är minimal (och ser ut att vara inom felmarginalen).

Att lära upp djupinlärningssystem är tidskrävande och kräver mängder av beräkningskraft. Logistisk regression är betydligt enklare att använda, kräver mindre datorkraft och har dessutom fördelen att modellen går att tolka: djupinlärningssystem är så kallade svarta lådor där vi inte vet varför de gör en viss bedömning, medan vi med logistisk regression kan förstå precis varför systemet gör bedömningen. Om båda systemen fungerar lika bra så ska man välja logistisk regression alla dagar i veckan. En produkt som inget vet hur den fungerar är förstås inte lika bra som en produkt som vi kan förstå.

I den här och liknande artiklar kan man just nu skönja två tendenser:

  • e-hälsa kommer fortsätta leda till förbättrad vård och smart användning av digitala journaler kommer leda till bättre diagnoser.
  • Alla vill hoppa på AI-tåget och det är lätt att bli förblindad av alla glänsande nya AI-verktyg. Det verkliga bidraget i den här artikeln är sättet att få ut information från digitala journaler – inte användet av djupinlärning. Trots det talar både forskarna och media mest om AI-aspekten.

Den dataanalys som använder de häftigaste senaste teknikerna är inte alltid den som är bäst. Det är något som är väl värt att ha i åtanke när ni anlitar konsulter för dataanalys. Ibland är AI och djupinlärning precis rätt verktyg för era problem, men ibland är andra alternativ mycket bättre. Precis som man ska vara försiktig med att anlita en snickare som tror sig kunna lösa alla byggprojekt med bara en hammare så ska man tänka sig för innan man anlitar en konsult som vill lösa alla problem med AI.

Vad innebär automatiseringen för det livslånga lärandet? Fler behöver läsa statistik

Det pratas allt mer om automatisering och vad det kommer att innebära för framtidens arbetsmarknad. OECD bedömer att ungefär 8 % av de svenska jobben kan försvinna som en följd av automatisering – och att den siffran är betydligt högre i en del andra länder. Andelen jobb som på olika sätt kommer påverkas och förändras av automatisering är däremot betydligt högre. Det innebär också att vi i framtiden måste vara beredda på att kontinuerligt vidareutbilda oss, när automatiseringen gör att arbetsuppgifterna ständigt förändras.

Större företag kommer att erbjuda intern vidareutbildning för sina anställda (Disney är ett aktuellt exempel på det), medan mindre företag får förlita sig på externa lösningar – antingen erbjuder man lön under utbildningar för att behålla personalen eller så använder man frilansare, för vilka egenbekostade utbildningar blir en del av den nya gigekonomin.

Här kommer förstås också staten få en stor roll att spela, och stora nya krav kommer ställas på vuxenutbildningen. I februari gav regeringen därför Vinnova i uppdrag att ta fram korta kurser på avancerad högskolenivå, särskilt utformade för vidareutbildning av yrkesverksamma specialister och nyligen gavs sju universitet i uppdrag att satsa på AI-fortbildning.

Ett område som väldigt många kommer behöva vidareutbilda sig inom är databearbetning och statistik, inklusive artificiell intelligens. Dels för att kunna använda och jobba med de nya automatiserade verktyg som kommer, och dels för nya arbetsuppgifter knutna till desamma. Ett exempel på en arbetsuppgift som kommer bli allt vanligare är datastädning: system för artificiell intelligens och maskininlärning fungerar bara bra om de matas med bra data – så någon måste se till att data håller hög kvalitet och inte innehåller felaktigheter. Räkna med att personal inom exempelvis sjukvården kommer behöva lära sig mer om datastädning under det kommande årtiondet.

En region som redan kommit långt inom databearbetning och statistik är Edinburgh i Skottland, som nu satsar på att bli ”Europas datahuvudstad”. Jag jobbar sedan i vintras med att utveckla University of Edinburgh nya kurser i sannolikhetslära och statistik, nyckelkurser inom deras nystartade masterprogram i data science (statistik, programmering, datahantering och dataanalys) där all undervisning sker över nätet.

Cockburn street i Edinburgh - en av de första gatorna man stöter på som turist, samt skådeplats för delar av Avengers: Inifinity War

Det finns fler anledningar till att man väljer att förlägga undervisningen för de här programmen online – anledningar som rimmar väl med framtidens behov av kontinuerlig vidareutbildning:

  • Det gör det möjligt att på ett effektivt sätt erbjuda undervisning till stora grupper studenter,
  • Det gör det möjligt för studenter som av olika anledningar inte har möjlighet att flytta till en universitetsstad att vidareutbilda sig (dit kan exempelvis personer som har ett jobb, familj eller rörelsehinder höra),
  • Det demokratiserar utbildningen genom att ge studenter från alla delar av världen möjlighet att studera vid ett prestigefyllt brittisk universitet.

Värt att poängtera är att onlineundervisning är ett komplement till och inte en ersättning för den traditionella salsundervisningen vid lärosätet, som fortfarande kan förväntas vara det första steget för de allra flesta. Distansundervisning är för övrigt inget nytt i sig – men ambitionsnivån och skalan på de program som nu kommer skiljer sig åt från det vi tidigare har sett. Det ställs därför också högre krav, bland annat när det gäller:

  • Förbättrade möjligheter till interaktion mellan studenterna,
  • Examination som i större utsträckning är (just det!) automatiserad, utan att den för den sakens skull bara utgörs av flervalsfrågor,
  • Användande av AI för att utvärdera och stimulera studenternas lärande.

En stor del mitt projekt med University of Edinburgh har hittills handlat om att hitta bra lösningar på framförallt de två förstnämnda utmaningarna. Vår första kurs startar i lite mindre skala september, och kommer sedan följas av en storskalig kurs med start i januari. I samband med det kommer jag att återkomma till hur vi jobbar med AI, studentinteraktion och automatiserad examination.

Om Googles etiska riktlinjer för AI

De senaste veckornas nyhetsrapportering om Google har handlat om hur ett stort antal av företagets anställda mer eller mindre gjort uppror mot ett samarbete med amerikanska försvarsdepartementet Pentagon. I det så kallade Project Maven har Google hjälpt Pentagon att utveckla ett AI-system för att lära militära drönare att känna igen olika objekt.

Varför denna upprördhet? Drönare som utan mänsklig inblandning kan utföra attacker mot utvalda mål är ett mardrömscenario av flera anledningar. Dels kan de orsaka skada på en enorm skala, dels vet vi att algoritmer felar och att fel personer kan angripas. Och än värre – när det inte finns en människa bakom avtryckaren, när beslutet om att döda någon flyttas längre bort från oss, så blir det lättare att ta till vapen.

En del AI-forskare är så oroade av den här möjliga utvecklingen att de producerat en kort film som visar vad utvecklingen av autonoma drönare skulle kunna få för konsekvenser. Det är skrämmande, och kan bli verklighet i en nära framtid:

Med anledning av det interna missnöjet och den dåliga publicitet det lett till gick Googles VD Sundar Pichai igår ut med ett meddelande om företagets nya AI-policy. Där framgår bland annat att man inte längre kommer vara inblandat i projekt som rör vapenteknologi. Gott så.

Intressant är annars att Google i texten uppger att de inte kommer att medverka till att utveckla ”technologies that gather or use information for surveillance violating internationally accepted norms”. Men vem bestämmer vad som är en internationellt gångbar norm? Nyss hemkommen från en affärsresa till Edinburgh kan jag konstatera att det finns en enorm skillnad mellan vad som betraktas som acceptabel övervakning i Sverige och i Storbritannien, där CCTV-kameror syns mer eller mindre överallt. För att inte tala om skillnaden mot Kina, där AI redan används i avancerad massövervakning. Vilken av dessa övervakningsnivåer är det Google syftar på?

Googles nya AI-policy är ett bra första steg, men luddiga formuleringar om massövervakning gör att de inte når hela vägen fram. Och i slutändan betyder de ingenting alls, så länge inte andra AI-jättar (som Microsoft, IBM, Facebook och Amazon) och internationella samfund kommer med liknande utfästelser.

Snart kommer AI användas för phishing och spam

Tidigare i maj presenterade Google sitt nya system Duplex, en AI-assistent som kan ringa telefonsamtal och med en perfekt men datorgenererad människoröst boka frisörtider och bord på restauranger. Många har diskuterat det etiska problemet som människoimiterande artificiella intelligenser medför. Somliga menar att det i det närmaste rör sig om bedrägeri om AI:n inte presenterar sig just som en AI – Duplex är ju skapat för att vara omöjligt att skilja åt från en mänsklig röst. Det hela blir inte bättre av att det idag dessutom går att lära AI att härma enskilda personers röster – en en minut lång ljudinspelning räcker.

Där vissa ser ett etiskt problem ser andra en möjlighet. Nästa generations bedrägerier, i form av phishingattacker och spam, kommer använda sig av artificiell intelligens. Redan idag förekommer bedrägerier över telefon. Ett exempel är samtal där man ringer upp äldre personer, uppger sig för att vara deras barnbarn och ber om ett lån. Ett annat är personer som ringer och påstår sig jobba för Microsoft – de hävdar att mottagarens dator smittats av ett virus och kan sedan antingen kapa datorn eller ta betalt för att ”ta bort viruset”.

Med Duplex-lika tekniker är det möjligt att genomföra den här sortens bedrägerisamtal på en helt annan skala. Idag begränsas de av tiden som krävs – en människa kan inte ringa tusen olika personer på en minut. Men en dator kan det, och snart kommer de också att göra det. Samma teknik kommer också användas för spamsamtal till telefoner. Genom att automatiskt söka information om bedrägerioffret på nätet kan attackerna riktas för att bli ännu effektivare.

Låter det otäckt? Det slutar inte där. Det senaste året har en snabb utveckling inom hur AI kan användas för fejkad video skett. Det går med hjälp av AI snart att skapa videoklipp där det ser ut som att vem som helst gör och säger vad som helst. Möjligheterna för bedrägerier, utpressning och fejkade nyheter är oändliga. Och behovet av tekniker för att avgöra om en video eller en röst är äkta eller inte är skriande.

Jag har fått inbjudningar om att hålla föredrag på det här temat under hösten – mer information om dem dyker upp efter sommaren.