Hur kan nya läkemedel utvecklas med AI?

I skuggan av klimatförändringar är antibiotikaresistens en av 2000-talets stora utmaningar. En ljusglimt kom häromveckan, när en artikel publicerades där forskare vid bland annat MIT beskrev hur de använt AI och maskininlärning för att upptäcka nya antibiotika som i djurstudier visat sig bita på multiresistenta bakterier. Artikeln finns här; en mer lättsmält rapport finns att läsa i The Guardian. Upptäckten har lyfts fram som början på en ny era för läkemedelsforskningen, där AI kommer att ge oss framtidens läkemedel. Liknande metoder har redan börjat användas för att ta fram läkemedel mot coronaviruset.

Men hur gör man egentligen för att få AI att upptäcka nya läkemedel?

AI och maskininlärning handlar i grund och botten om att låta datorn ta fram komplicerade matematiska formler (ofta många sidor långa) som kan användas för att lösa problem. Vill man exempelvis lära datorn att översätta text måste man då först förse den med en massa exempel på översatta texter. Formlerna byggs upp genom att datorn går igenom de här exemplen för att hitta mönster. När de är klara kan man stoppa in någon sorts data i formeln och få ut ett svar. Om systemet byggts för översättningar stoppar man in en text och får ut en översättning av texten till ett annat språk. Om det har byggts för att beskriva bilder stoppar man in en bild och får ut en beskrivning av vad bilden föreställer.

Kan då samma idé användas för att hitta nya antibiotika? Svaret är ja. Vi känner idag till hundratals miljoner molekyler, men bara en liten bråkdel av dem har testats som läkemedel. En idé vore därför att bygga ett AI-system som kan känna igen hur antibiotikamolekyler ser ut och låta det gå igenom listan över kända molekyler för att bedöma om dessa kan användas som antibiotika eller inte.

Det är precis vad forskarna vid MIT gjorde i sitt projekt. De samlade ihop data om drygt 2300 molekyler, varav några gick att använda som antibiotika vid behandling av vissa bakterieinfektioner. De exemplen kunde de sedan använda för att bygga ett AI-system som utifrån information om en molekyls struktur kunde förutsäga om molekylen fungerade som antibiotika eller inte. Inte med hundraprocentig noggrannhet, men med tillräckligt hög noggrannhet för att oftast ha rätt. Forskarna lät därefter systemet gå igenom mer än 100 miljoner kända molekyler och bedöma hur sannolikt det var att dessa skulle gå att använda som antibiotika. Slutligen testade de om de 99 molekyler som systemet ansåg vara mest lovande faktiskt hade någon antibiotisk verkan i laboratorieförsök. 63 av dem visade sig ha det.

En av molekylerna, kallad halicin, verkar särskilt lovande. I försök med möss har forskarna sett att läkemedlet, som inte är likt de antibiotika som används idag, är effektivt mot flera multiresistenta bakterier.

Den stora fördelen med AI är sällan att systemen utför uppgifter bättre än oss, utan att de kan utföra uppgifter mycket snabbare än vad människor hade klarat av. Textöversättning är ett bra exempel på det – tjänster som Google Översätt ger blixtsnabba översättningar. De blir inte alltid rätt och håller inte samma kvalitet som omsorgsfullt gjorda översättningar av professionella mänskliga översättare, men är ofta bra nog. Den här snabbheten var helt avgörande för antibiotikaprojektet vid MIT. Ingen forskargrupp på jorden hade kunnat testa sig igenom 100 miljoner molekyler, men AI-systemet kunde göra det på några timmar. Det gav inte rätt svar för varje molekyl, men för tillräckligt många för att vara användbart. Det är, åtminstone i det här fallet, gott nog.

Dagens AI ligger långt ifrån de superintelligenta robotar vi stöter på i science fiction. Men redan nu kan vi använda AI för att automatisera vissa uppgifter som lämpar sig särskilt bra för datorer. Det kan göra att projekt som skulle ta årtionden blir klara på några veckor. Det öppnar nya möjligheter och frigör tid, och rätt använt låter det oss människor fokusera på andra mer intressanta arbetsuppgifter. AI som ett verktyg i läkemedelsutveckling är inte science fiction – det är kort och gott science.

Ny kurs om maskininlärning

Jag samarbetar sedan i vintras med Statistikakademin, som erbjuder kurser i statistik. Vi har nu utvecklat en ny endagskurs om maskininlärning och AI, där jag har konstruerat kursmaterialet och kommer vara lärare.

Kursen passar bra för dig som vill lära dig att använda maskininlärning för prognoser, klassificering och automatisering, eller bara vill få en bättre förståelse för vad maskininlärning och AI egentligen innebär – nog så viktig för beslutsfattare som bombarderas med budskap om hur data blir allt viktigare för verksamheten.

Du kan redan nu boka plats på någon av de schemalagda kurserna i vår:
6 februari i Uppsala
26 mars i Göteborg
7 maj i Stockholm

Anmälan sker via Statistikakademins webbplats.

Om ni är flera som är intresserade så kan jag också komma och ge kursen på plats hos er. Kontakta mig för att få veta mer.

Genomskinlig maskininlärning: att få AI att förklara sina beslut

De olika verktyg som används inom AI och maskininlärning brukar kallas för modeller och består av ett antal matematiska formler. Det är sällan vi ser formlerna bakom modellen – istället tar vi data, låter datorn stoppa in dem i vår modell och får ut någon sorts svar. Ett exempel kan vara att vi stoppar in data om en bankkund i vår modell, som i sin tur ger oss en rekommendation om huruvida kunden ska beviljas ett lån eller inte. De allra flesta av dessa modeller är vad som kallas för ”black box”-modeller. Det innebär att modellerna utgörs av extremt komplexa formler, vilket gör att de inte ger oss någon förståelig förklaring till varför de fattar ett visst beslut. Blev din låneansökan nekad? Modellen kan inte förklara varför.
Bildresultat för computer says no
I takt med att den sortens modeller blir allt vanligare i samhället kommer också strängare krav på att modellernas beslut ska kunna förklaras. I media lyfts avskräckande exempel fram, där ”black box”-modeller börjat diskriminera olika grupper, och tuffare krav från såväl konsumenter som politiker är att vänta. Det räcker inte längre med att modellen svarar ja eller nej – istället krävs genomskinlighet och öppenhet.
 
Det finns också goda anledningar för företagen själva att inte blint använda ”black box”-modeller. Genom att förstå hur modellen fattar sina beslut kan man förstå dess svagheter, stoppa potentiella problem och förbättra sin modell.
 
Även om många AI- och maskininlärningsmodeller, däribland de numera så populära neurala nätverken, är av ”black box”-typ så går det att öppna upp dem för att förklara varför de fattar olika beslut. Den processen kan delas upp i fyra delar:
 
1. Feature importance: vi kan på flera olika sätt mäta vilka vilka variabler som har störst inflytande i modellen.
2. Feature interaction: vi kan visualisera och undersöka hur olika variabler samverkar för att påverka modellens beslut.
3. Effekt av förändringar: vi kan visa hur olika förändringar av en individs variabler skulle förändra modellens beslut.
4. Identifiering av problem: genom att väga ihop resultaten från de tre punkterna ovan kan vi identifiera variabler som kan orsaka eller orsakar problem i modellen och utifrån detta föreslå förbättringar.
 
Det fina med de metoder som används för att öppna upp modellerna är att de inte kräver tillgång till modellens inre. Istället räcker det med att kunna mata in nya data i modellen och se vad svaren blir. Det gör det möjliga att anlita externa konsulter för arbetet med genomskinlighet och öppenhet – utan att behöva dela med sig av de modeller som kan utgöra en så viktig del av ett företags IP.
 

Prognosverktyg för mjölkbönder och mejerier

I våras hjälpte jag Dairy Data Warehouse att utveckla olika prognossystem för mjölkindustrin. I förra veckan lanserades några av de här systemen på den ledande mässan inom djurhållning: EuroTier i Hannover. De system jag varit med och utvecklat använder AI i form av  djupinlärning (deep learning), där data från en rad olika källor (mjölkningsrobotar, fodersystem, avelsdatabaser, m.m.) vägs ihop för att göra prognoser för exempelvis hur mycket mjölk en ko kommer att ge det närmaste året.

Systemen kommer att kunna användas på flera olika sätt. Bonden kommer att få bättre underlag för att bedöma vilka djur hon ska behålla och för hur ekonomin kommer se ut framöver. Mejerierna kommer att få bättre uppskattningar av hur mycket mjölk de ska hämta olika dagar och kan därmed bättre planera de rutter som tankbilarna åker, med både ekonomiska och miljömässiga vinster.

Dagens mjölkindustri är teknikintensiv och full av system som samlar in data av olika slag. Dairy Data Warehouse har byggt upp en unik databas där data från alla dessa system samlas på ett och samma ställe. Med hjälp av den databasen har vi också utvecklat system som ska ge bättre djurhälsa och som knyter an till internet of things i ladugården och på mejeriet. Mer om det kommer en annan gång.

  • Jag erbjuder rådgivning och utvecklingstjänster kring prognoser och AI. Kontakta mig för att få veta mer.

Diskriminering och dåliga data: fallet Amazon

I dagarna har det rapporterats om att Amazon lagt ner ett projekt där AI skulle användas för att sålla bland kandidater vid rekryteringar (IDG, Reuters). Anledningen är att AI-verktyget började diskriminera kvinnor och föredra manliga sökande.

Men hur kan en dator lära sig att diskriminera? Svaret finns i våra data.

Statistiker världen över har ägnat årtionden åt att fundera över hur man på bästa sätt ska samla in data för att kunna ge svar på de frågor man undrar över. Det finns många fallgropar när det gäller datainsamling. Två av dem är:

  • Obalanserat urval: om vi vill utföra en opinionsundersökning för att kunna göra en prognos för hur det svenska folket kommer att rösta i ett riksdagsval så duger det inte att exempelvis bara fråga personer i Danderyd, eftersom den gruppen helt enkelt inte är representativ för riket i stort. Om personerna i vårt datamaterial till största delen är från en liten del av samhället så kan våra data inte användas för att säga något om resten av samhället.
  • Felmärkta data: i studier där man ska lära en statistisk modell att till exempel diagnosticera en sjukdom så behöver alla patienter i datamaterialet att ”märkas” – antingen som att de har sjukdomen eller som att de inte har sjukdomen. Den märkningen utgör facit när modellen tränas att känna igen sjukdomen. Tyvärr är det vanligt att man helt enkelt inte har perfekta data. Diagnoser kan vara svåra att ställa och en del patienter får fel diagnos. Det kan finnas komplicerade gränsfall, ovanliga fall med andra symptom än de vanligaste och patienter som har symptomen men inte sjukdomen. Det gör att det ofta kan bli fel när patienterna som ingår i datamaterialet ska märkas – och de fel som sker vid märkningen lär sig den statistiska modellen att upprepa. Märkningen är modellens facit och den kan inte på egen hand upptäcka när det blivit fel.

Om man inte undviker fallgroparna så riskerar man att lura både sig själv och andra. Det gäller oavsett om man utför opinionsundersökningar eller utvecklar AI-verktyg för rekrytering.

I fallet med Amazons rekryterings-AI så finns det tecken på att de fallit i båda de ovan nämnda fallgroparna:

  • Obalanserat urval: Amazons datamaterial bestod av ansökningar som tidigare kommit in till företaget. En majoritet av dessa var från män. Det gör att det blir lättare för AI-systemet att känna igen anställningsbara män (eftersom det sett fler exempel på sådana). En fara med det här datamaterialet är också att systemet kan avfärda kandidater som inte liknar de som tidigare sökt sig till företaget – vilket gör att man riskerar att missa nya kompetenser.
  • Felmärkta data: om (så som ofta visats vara fallet) kvinnors kompetens nedvärderas i teknikbranschen medan mäns kompetens uppvärderas, så kommer det att finnas en felmärkning i datamaterialet. Kvinnor kommer felaktigt att av människor i genomsnitt bedömas som mindre kompetenta (och därmed inte märkas som anställningsbara) och män felaktigt att av människor i genomsnitt bedömas som mer kompetenta (och därmed märkas som anställningsbara). AI:n lära sig då att själv upprepa de felvärderingarna.

Att låta sökande bedömas av ett AI-verktyg är i teorin en jättebra idé. Datorn kan vara opartisk, rättvis och ge alla samma chans. Men om de data som används för att bygga upp verktyget inte är opartiska, rättvisa och ger alla samma chans blir effekten den motsatta. AI:n löser i så fall inte problemet med diskriminering – tvärtom cementerar den diskrimineringen.

Diskriminerande AI-system är på intet sätt något som är unikt för rekryteringsverktyg – ett annat exempel från i år är ansiktsigenkänningssystem som fungerar mycket bättre för vita män än för personer med annat kön eller annan hudfärg. Värt att understryka är att Amazon på eget bevåg lade ned projektet med AI-verktyg för rekrytering. Men hur många företag har gått och kommer gå vidare med AI-projekt utan att förstå vikten av att inte bygga in diskriminering i dem? Vad kommer de och vi att gå miste om när systemen fattar beslut på felaktiga grunder? Och hur kommer reaktionerna att bli när problemen med deras system avslöjas?

  • Jag erbjuder rådgivning kring datainsamling och hjälp med att bygga statistiska modeller och AI-system som undviker fallgroparna. Kontakta mig för att få veta mer.
  • Jag ger också föredrag om hur vi ska göra för att undvika att lura oss själva och andra med siffror och statistik, samt om hur AI påverkar oss idag och i framtiden.