Hur kan nya läkemedel utvecklas med AI?

I skuggan av klimatförändringar är antibiotikaresistens en av 2000-talets stora utmaningar. En ljusglimt kom häromveckan, när en artikel publicerades där forskare vid bland annat MIT beskrev hur de använt AI och maskininlärning för att upptäcka nya antibiotika som i djurstudier visat sig bita på multiresistenta bakterier. Artikeln finns här; en mer lättsmält rapport finns att läsa i The Guardian. Upptäckten har lyfts fram som början på en ny era för läkemedelsforskningen, där AI kommer att ge oss framtidens läkemedel. Liknande metoder har redan börjat användas för att ta fram läkemedel mot coronaviruset.

Men hur gör man egentligen för att få AI att upptäcka nya läkemedel?

AI och maskininlärning handlar i grund och botten om att låta datorn ta fram komplicerade matematiska formler (ofta många sidor långa) som kan användas för att lösa problem. Vill man exempelvis lära datorn att översätta text måste man då först förse den med en massa exempel på översatta texter. Formlerna byggs upp genom att datorn går igenom de här exemplen för att hitta mönster. När de är klara kan man stoppa in någon sorts data i formeln och få ut ett svar. Om systemet byggts för översättningar stoppar man in en text och får ut en översättning av texten till ett annat språk. Om det har byggts för att beskriva bilder stoppar man in en bild och får ut en beskrivning av vad bilden föreställer.

Kan då samma idé användas för att hitta nya antibiotika? Svaret är ja. Vi känner idag till hundratals miljoner molekyler, men bara en liten bråkdel av dem har testats som läkemedel. En idé vore därför att bygga ett AI-system som kan känna igen hur antibiotikamolekyler ser ut och låta det gå igenom listan över kända molekyler för att bedöma om dessa kan användas som antibiotika eller inte.

Det är precis vad forskarna vid MIT gjorde i sitt projekt. De samlade ihop data om drygt 2300 molekyler, varav några gick att använda som antibiotika vid behandling av vissa bakterieinfektioner. De exemplen kunde de sedan använda för att bygga ett AI-system som utifrån information om en molekyls struktur kunde förutsäga om molekylen fungerade som antibiotika eller inte. Inte med hundraprocentig noggrannhet, men med tillräckligt hög noggrannhet för att oftast ha rätt. Forskarna lät därefter systemet gå igenom mer än 100 miljoner kända molekyler och bedöma hur sannolikt det var att dessa skulle gå att använda som antibiotika. Slutligen testade de om de 99 molekyler som systemet ansåg vara mest lovande faktiskt hade någon antibiotisk verkan i laboratorieförsök. 63 av dem visade sig ha det.

En av molekylerna, kallad halicin, verkar särskilt lovande. I försök med möss har forskarna sett att läkemedlet, som inte är likt de antibiotika som används idag, är effektivt mot flera multiresistenta bakterier.

Den stora fördelen med AI är sällan att systemen utför uppgifter bättre än oss, utan att de kan utföra uppgifter mycket snabbare än vad människor hade klarat av. Textöversättning är ett bra exempel på det – tjänster som Google Översätt ger blixtsnabba översättningar. De blir inte alltid rätt och håller inte samma kvalitet som omsorgsfullt gjorda översättningar av professionella mänskliga översättare, men är ofta bra nog. Den här snabbheten var helt avgörande för antibiotikaprojektet vid MIT. Ingen forskargrupp på jorden hade kunnat testa sig igenom 100 miljoner molekyler, men AI-systemet kunde göra det på några timmar. Det gav inte rätt svar för varje molekyl, men för tillräckligt många för att vara användbart. Det är, åtminstone i det här fallet, gott nog.

Dagens AI ligger långt ifrån de superintelligenta robotar vi stöter på i science fiction. Men redan nu kan vi använda AI för att automatisera vissa uppgifter som lämpar sig särskilt bra för datorer. Det kan göra att projekt som skulle ta årtionden blir klara på några veckor. Det öppnar nya möjligheter och frigör tid, och rätt använt låter det oss människor fokusera på andra mer intressanta arbetsuppgifter. AI som ett verktyg i läkemedelsutveckling är inte science fiction – det är kort och gott science.

Coronaviruset visar utvecklingen inom AI

Uppdatering april 2020: Texten nedan skrevs i början av februari, innan det nya coronaviruset på allvar börjat spridas utanför Kina. Den handlar om hur AI kan användas för att upptäcka och bekämpa epidemier i ett tidigt skede snarare än när man fått stor samhällsspridning, och handlar därför inte om det allvarligare läge som många länder nu befinner sig i.

De senaste veckorna har nyhetsrapporteringen dominerats av spridningen av coronaviruset 2019-nCov. Ett ord som dyker upp gång på gång i de spaltmeter som skrivits om viruset är AI, och rapporteringen låter oss se vilka kliv utvecklingen inom AI tagit det senaste årtiondet. Det vi ser är imponerande.

Smittspridningen blev allmänt känd först i januari, även om den nu tros ha pågått sedan december. Redan då varnade det kanadensiska bolaget BlueDot sina kunder för att deras AI-system, som samlar in data från mängder av digitala källor, upptäckt spridningen av ett nytt virus i kinesiska Wuhan.

Men AI används inte bara för att kunna förutse hur epidemier sprider sig. Tvärtom så används AI för att bekämpa spridningen på flera olika sätt:

  • AI-drivna botar har ringt upp Shanghaibor hörandes till riskgrupper och frågat dem om symptom. I en del fall har de rekommenderats karantän i hemmet, och botarna har då informerat myndigheterna om de misstänkta fallen. En bot kan genomföra 200 sådana samtal på 5 minuter, medan en människa hade behövt 2-3 timmar för att göra motsvarande jobb. Med AI kan myndigheterna snabbt nå ett stort antal människor under kriser.
  • Autonoma robotar används för att desinficera slutna delar av sjukhus och servera mat till personer som satts i karantän. AI kan ta över farliga uppdrag från människor för att minska smittorisken.
  • AI-system med infraröda sensorer mäter kroppstemperaturen på passagerare i kollektivtrafiken, för att upptäcka misstänka fall av smittan. Snabbare och effektivare än om varje kontroll genomförts av en spärrvakt.
  • Stora kinesiska teknikbolag som Baidu och Alibaba har delat med sig av AI-algoritmer och datorkraft för att förstå virusets genetik, vilket snabbat upp processen flera gånger om.
  • AI har använts för att ta fram kandidatmolekyler för läkemedel mot coronaviruset. Det gör att läkemedel förhoppningsvis kan tas fram på mycket kortare tid.

En titt på rapporteringen kring coronaviruset gör det tydligt att AI är inte längre science fiction, utan något som används överallt hela tiden. Vi stöter på AI varje dag i nätbutikers och strömningstjänsters rekommendationer, kartappar, skräppostfilter, kamerafilter och röstassistenter som Google Home och Siri. Samtidigt är den här en teknologi som fortfarande är ung, och som dras med problem som inbyggd diskriminering och bristande genomskinlighet. Att ha en grundläggande förståelse för AI blir allt viktigare för allt fler, dels för att förstå teknikens möjligheter och dels för att förstå dess begränsningar.

Ny kurs om maskininlärning

Jag samarbetar sedan i vintras med Statistikakademin, som erbjuder kurser i statistik. Vi har nu utvecklat en ny endagskurs om maskininlärning och AI, där jag har konstruerat kursmaterialet och kommer vara lärare.

Kursen passar bra för dig som vill lära dig att använda maskininlärning för prognoser, klassificering och automatisering, eller bara vill få en bättre förståelse för vad maskininlärning och AI egentligen innebär – nog så viktig för beslutsfattare som bombarderas med budskap om hur data blir allt viktigare för verksamheten.

Du kan redan nu boka plats på någon av de schemalagda kurserna i vår:
6 februari i Uppsala
26 mars i Göteborg
7 maj i Stockholm

Anmälan sker via Statistikakademins webbplats.

Om ni är flera som är intresserade så kan jag också komma och ge kursen på plats hos er. Kontakta mig för att få veta mer.

AI på Industrinatten

Industrinatten är en mötesplats mellan svensk industri och skolungdomar, som ordnas årligen på en rad platser i Sverige. Den här veckan höll jag öppningsföredraget på Industrinatten i Hofors, där jag pratade om vad AI egentligen är och hur det kommer att påverka oss framöver. Jag börjar ofta den här sortens föredrag med att prata om de senaste tjugo årens teknikutveckling, som till stort del drivits av (mobilt) internet och tunna (pek)skärmar. På samma sätt kommer de kommande tjugo årens utveckling drivas av så kallad snäv AI: datorsystem som automatiserar olika uppgifter åt oss.

Att systemen kan automatisera olika uppgifter innebär däremot inte att de är särskilt intelligenta, vilket skolungdomarna i Hofors också fick se ett antal exempel på. Några av dem kom från Google Översätt, som trots att Google årligen lägger miljarder på att stoppa in AI i sina system ibland misslyckas fullständigt med sina översättningar.

Modern AI har en enorm potential, men om man inte är försiktig när man bygger de här systemen så händer det lätt att de ger fel svar – som i exemplet ovan – eller får andra oönskade beteenden, som exempelvis diskriminering. Det är en av anledningarna till att det är så viktigt att undersöka hur AI-systemen egentligen fungerar innan man börjar använda dem.

  • Vill ni höra mer om vad AI är? Hur det fungerar? Vad det kan och inte kan göra idag? Hur det kommer att forma vår framtid? Kontakta mig för att boka ett föredrag.

Genomskinlig maskininlärning: att få AI att förklara sina beslut

De olika verktyg som används inom AI och maskininlärning brukar kallas för modeller och består av ett antal matematiska formler. Det är sällan vi ser formlerna bakom modellen – istället tar vi data, låter datorn stoppa in dem i vår modell och får ut någon sorts svar. Ett exempel kan vara att vi stoppar in data om en bankkund i vår modell, som i sin tur ger oss en rekommendation om huruvida kunden ska beviljas ett lån eller inte. De allra flesta av dessa modeller är vad som kallas för ”black box”-modeller. Det innebär att modellerna utgörs av extremt komplexa formler, vilket gör att de inte ger oss någon förståelig förklaring till varför de fattar ett visst beslut. Blev din låneansökan nekad? Modellen kan inte förklara varför.
Bildresultat för computer says no
I takt med att den sortens modeller blir allt vanligare i samhället kommer också strängare krav på att modellernas beslut ska kunna förklaras. I media lyfts avskräckande exempel fram, där ”black box”-modeller börjat diskriminera olika grupper, och tuffare krav från såväl konsumenter som politiker är att vänta. Det räcker inte längre med att modellen svarar ja eller nej – istället krävs genomskinlighet och öppenhet.
 
Det finns också goda anledningar för företagen själva att inte blint använda ”black box”-modeller. Genom att förstå hur modellen fattar sina beslut kan man förstå dess svagheter, stoppa potentiella problem och förbättra sin modell.
 
Även om många AI- och maskininlärningsmodeller, däribland de numera så populära neurala nätverken, är av ”black box”-typ så går det att öppna upp dem för att förklara varför de fattar olika beslut. Den processen kan delas upp i fyra delar:
 
1. Feature importance: vi kan på flera olika sätt mäta vilka vilka variabler som har störst inflytande i modellen.
2. Feature interaction: vi kan visualisera och undersöka hur olika variabler samverkar för att påverka modellens beslut.
3. Effekt av förändringar: vi kan visa hur olika förändringar av en individs variabler skulle förändra modellens beslut.
4. Identifiering av problem: genom att väga ihop resultaten från de tre punkterna ovan kan vi identifiera variabler som kan orsaka eller orsakar problem i modellen och utifrån detta föreslå förbättringar.
 
Det fina med de metoder som används för att öppna upp modellerna är att de inte kräver tillgång till modellens inre. Istället räcker det med att kunna mata in nya data i modellen och se vad svaren blir. Det gör det möjliga att anlita externa konsulter för arbetet med genomskinlighet och öppenhet – utan att behöva dela med sig av de modeller som kan utgöra en så viktig del av ett företags IP.