e-hälsa ger bättre vård – med eller utan AI

e-hälsa och digitalisering av vården är 2010-talets melodi och nu börjar vi på allvar se fördelarna med det inom medicinsk diagnostik. Ta patienter som hamnar på sjukhus som ett exempel. Genom åren har flera statistiska modeller för att förutspå mortalitet, oplanerade återbesök och långvarig inläggning på sjukhus tagits fram. Genom att använda information om exempelvis blodtryck, puls, andning och vita blodkroppar kan modellerna med hyfsad noggrannhet avgöra risken att en patient avlider, tvingas komma tillbaka till sjukhuset eller blir kvar i mer än en vecka.

I en intressant artikel från maj i år visar forskare från bland annat Google och Stanford att ett AI-system som kan läsa digitala journaler gör ett betydligt bättre jobb när det gäller att förutspå sådana risker. Artikeln har uppmärksammats stort i media, bland annat av Daily Mail och Bloomberg. Studien ser ut som en triumf för e-hälsa och forskarna ägnar mycket utrymme åt att beskriva fördelarna med djupinlärning, som är den form av AI de använt.

Det är lätt att hålla med om att det här är ett stort kliv framåt för e-hälsa – det visar att datorsystem som tolkar hela journaler istället för några få mätvärden har stor potential. Däremot är det knappast något stort kliv framåt för AI. Den som läser artikeln lite närmare hittar nämligen en jämförelse mellan forskarnas djupinlärningssystem och ett betydligt enklare system som matats med samma journaldata. Det senare använder logistisk regression – en stapelvara inom traditionell statistisk analys, som lärs ut på grundkurser och har funnits sedan 1950-talet. Jämförelsen, som ligger gömd längst ner i artikelns appendix, visar att skillnaden mellan djupinlärning och logistisk regression är minimal (och ser ut att vara inom felmarginalen).

Att lära upp djupinlärningssystem är tidskrävande och kräver mängder av beräkningskraft. Logistisk regression är betydligt enklare att använda, kräver mindre datorkraft och har dessutom fördelen att modellen går att tolka: djupinlärningssystem är så kallade svarta lådor där vi inte vet varför de gör en viss bedömning, medan vi med logistisk regression kan förstå precis varför systemet gör bedömningen. Om båda systemen fungerar lika bra så ska man välja logistisk regression alla dagar i veckan. En produkt som inget vet hur den fungerar är förstås inte lika bra som en produkt som vi kan förstå.

I den här och liknande artiklar kan man just nu skönja två tendenser:

  • e-hälsa kommer fortsätta leda till förbättrad vård och smart användning av digitala journaler kommer leda till bättre diagnoser.
  • Alla vill hoppa på AI-tåget och det är lätt att bli förblindad av alla glänsande nya AI-verktyg. Det verkliga bidraget i den här artikeln är sättet att få ut information från digitala journaler – inte användet av djupinlärning. Trots det talar både forskarna och media mest om AI-aspekten.

Den dataanalys som använder de häftigaste senaste teknikerna är inte alltid den som är bäst. Det är något som är väl värt att ha i åtanke när ni anlitar konsulter för dataanalys. Ibland är AI och djupinlärning precis rätt verktyg för era problem, men ibland är andra alternativ mycket bättre. Precis som man ska vara försiktig med att anlita en snickare som tror sig kunna lösa alla byggprojekt med bara en hammare så ska man tänka sig för innan man anlitar en konsult som vill lösa alla problem med AI.

AI upptäcker hudcancer

Jag har de senaste dagarna skrivit om svårigheter med att utveckla AI för medicinsk användning samt om problem som kan uppstå när medicinska AI-tekniker används för andra syften. Dags så för ett mer positivt exempel – Vetenskapsradion rapporterade igår om en ny artikel i tidskriften Annals of Oncology, där en tysk forskargrupp använt AI för att utifrån bilder på hudförändringar upptäcka hudcancer.

När diagnostiska metoder utvärderas finns det två mått som är särskilt intressanta:

  • Specificitet: hur stor andel av de sjuka patienter som diagnosticeras som sjuka – en metod med hög specificitet missar sällan sjuka patienter.
  • Sensitivitet: hur stor andel av de friska patienterna som inte får sjukdomsdiagnosen – en metod med hög sensitivitet ger sällan felaktigt patienter en diagnos.

Svårigheten med det här är att så metoder som har hög specificitet ofta har låg sensitivitet, och vice versa – ska man verkligen upptäcka alla sjuka patienter måste man ta med många tveksamma fall, och då fångar man automatiskt upp många friska patienter också.

De 58 dermatologer som användes som jämförelsegrupp i den tyska studien nådde en specificitet på 75,7 % och en sensitivitet på 88,9 %. AI:n nådde vid samma sensitivitet en specificitet på 82,5 % och presterade därmed bättre än dermatologerna. Ett fint resultat för AI inom medicin! Metoden som användes – faltningsnätverk, kallade convolutional neural networks på engelska – har under flera år rönt stora framgångar inom andra problem som går ut på att få information från bilder.

I en ganska nära framtid kommer vi att se den här sortens verktyg för privat bruk – exempelvis en app i telefonen som kan bedöma hudförändringar. I sådana sammanhang blir det väldigt intressant med ansvarsfrågor. Vem är egentligen ansvarig om din app inte lyckas upptäcka din hudcancer?

AI inom medicin – en återvändsgränd?

Artificiell intelligens (AI) har under de senaste åren framställts som något som fullständigt kommer revolutionera sjukvården. Bland dem som leder hajpen märks Andrew Ng – Stanfordprofessor och ledande tänkare inom AI, med bakgrund på Google och Baidu:

Stämmer det som Ng säger – har radiologer snart gjort sitt inom vården? Nej, knappast. En närmare titt i Ngs artikel visar att deras AI-modell utan alltför stor marginal lyckats identifiera lunginflammation bättre än fyra radiologer i en studie med drygt 400 röntgenplåtar. Det betyder förstås inte att den är bättre än alla radiologer eller ens radiologer i allmänhet – och dessutom har stora problem med studien påpekats: radiologerna och AI:n verkar inte ha bedömt samma bilder (vilket försvårar jämförelsen) och i datamaterialet finns tveksamma gränsdragningar mellan närliggande diagnoser.

I förra veckan kom ett uppföljningsarbete där samma AI-system användes för att bedöma radiologiska bilder från andra delar av kroppen. Resultatet var att AI:n var sämre än alla de tre radiologer som också gjorde bedömningar utifrån bilderna. Så borde radiologer oroa sig för att ersättas av maskiner? Inte än på ett tag (och dessutom har de förstås långt fler arbetsuppgifter än att titta på bilder).

Förutom att de mycket uppmärksammade radiologiresultaten visat sig vara överdrivna kom i veckan också nyheten att IBM Watson Health tvingats avskeda 50-70 % av sin personal. IBMs Watson har länge setts som ledande inom medicinsk AI och precisionsmedicin, men nu visar det sig alltså inte gå så bra som man hoppats.

Det här leder förstås till en fråga – är AI inom medicin överhajpat? På kort sikt är svaret nog ja. På längre sikt är det nog nej. Men AI inom medicin är svårt. Det finns flera anledningar till det:

  • Dagens AI-system kräver stora mängder data för att nå bra resultat. För många sjukdomar finns det helt enkelt inte tillräckligt mycket data. Här finns förstås en stor potential för forskningsframsteg i de nordiska länderna, med våra stora nationella register.
  • Förutom kvantitet krävs också kvalitet – om AI:n matas med dåliga data (exempelvis data innehållandes feldiagnosticerade patienter) blir resultaten genast sämre.
  • Medicin är svårt och det är inte alltid lätt att på ett vettigt sätt dela in patienter i kategorier. Av den anledningen har man i flera AI-projekt valt att förenkla problemet genom att bara jämför fullt friska patienter med de allra svåraste fallen, vilket gör att man helt bortser från de mest svårbedömda (och därmed mest intressanta) fallen.

Framsteg inom medicin för AI kommer kräva nära samarbeten mellan AI-forskningen och vården – och inte minst en stor portion ärlighet. Det finns en enorm potential för användning av AI och maskininlärning inom vården, men vi måste också vara tydliga med de begränsningar som finns och inte överdriva hur långt vi redan har kommit.

  • Jag finns tillgänglig för att ge föredrag om AI inom medicin, där jag presenterar några aktuella exempel på framgångsrika försök (jodå, de finns också!), överdriven hajp, säkerhetsrisker och problem när artificiell intelligens används för diagnostiska syften. Kontakta mig för mer information.
  • Jag har sedan i vintras jobbat med det nederländska företaget Dairy Data Warehouse för att utveckla AI-drivna system inom veterinärmedicin. Mer om det projektet kommer på den här bloggen senare i år.

Verktyg för att analysera bakteriers tillväxt

Jag har under flera års tid hjälpt forskare vid Institutionen för medicinsk biokemi och mikrobiologi på Uppsala universitet att analysera data om bakterietillväxt. Ofta har det rört frågor om hur bakterier med olika gener växer under olika förhållanden, vilket är viktigt för att förstå hur antibiotikaresistens uppstår och fungerar.

De statistiska analyserna är rutinartade – kruxet är istället att det ofta är data från hundratals olika bakteriestammar som ska analyseras. Tidigare gjorde forskarna det ”för hand”, vilket tog några minuter för varje stam och ledde till många timmars monotont arbete framför datorn. Jag utvecklade ett skript som istället låter dem använda ett gränssnitt i sina webbläsare för att visualiserade bakteriernas tillväxt och automatiskt utföra den statistiska analysen, så att alla stammar kan analyseras inom loppet av några sekunder.

Skriptet, som finns beskrivet här, har idag använts av forskare från en rad olika länder. Förra året använde vi det i en artikel där vi kunde visa att E. coli-bakterier som i laboratorietester är resistenta mot antibiotikumet mecillinam i själva verket inte behöver vara antibiotikaresistenta när de lever i människokroppen. Mecillinam ges ofta mot urinvägsinfektioner i Sverige. Resultaten bidrar till att förklara varför den kliniska resistensutvecklingen mot just mecillinam har varit så låg och pekar på att de laboratorietester som idag används för att undersöka antiobiotikaresistens kan behöva utvecklas.